Form factor of a sphere

Example: liquid, pair correlation function

Correlation fades for long distances:

$$
g(\mathbf{r})=\frac{\langle\rho(\mathbf{0}) \rho(\mathbf{r})\rangle}{\rho_{0}^{2}} \rightarrow \frac{\rho_{0}^{2}}{\rho_{0}^{2}}=1
$$

Example: liquid, structure factor

Form factor and structure factor

Single particle (polymer)
Polymer Solution
Convolution with
quasi-liquid structure

$S(Q)$: Structure factor

FT: Multiplication

Summary elastic scattering

- The scattering law is the absolute square of the Fourier transform of the density.
- The scattering law is the Fourier transform of the density correlation function.
- The scattering vector \mathbf{Q} is the vectorial difference of the incident and the scattered wave vector (scattering triangle):

$$
Q=\frac{4 \pi}{\lambda} \sin \theta
$$

- Fourier transform $\Rightarrow Q$ roughly corresponds to a length $2 \pi / Q$.
- Repetitive structure: product of form- and structure factor.

Scattering from dynamic systems (inelastic scattering)

"Neutrons tell us where the atoms are and how they move."
[C. G. Shull ?]

Elastic and inelastic scattering

What is the difference between elastic and inelastic scattering?

Elastic scattering

- scatterers are (assumed) fixed in space
- no energy transfer

> Information about
- Structure

Inelastic scattering

- scatterers are moving or moved by neutron
- energy transfer
> Information about
- Structure
- Dynamics

Inelastic scattering

Energy loss

- Energy is transferred from the neutron to the system:

Energy gain

- Energy is transferred from the system to the neutron:
- $\hbar \omega=E^{\prime}-E<0$
- $\lambda^{\prime}>\lambda$
- $k^{\prime}<k$
- $\hbar \omega=E^{\prime}-E>0$
- $\lambda^{\prime}<\lambda$
- $k^{\prime}>k$

The scattering triangle (inelastic scattering)

Source

The scattering triangle is not isosceles, Q is not determined by the position of source and detector only, Q is a function of θ and $\hbar \omega$:
$Q=\sqrt{k^{2}+k^{\prime 2}-2 k k^{\prime} \cos 2 \theta}=\sqrt{\frac{8 \pi^{2}}{\lambda^{2}}+\frac{2 m \omega}{\hbar}-\frac{4 \pi}{\lambda} \sqrt{\frac{4 \pi^{2}}{\lambda^{2}}+\frac{2 m \omega}{\hbar}} \cos 2 \theta}$
${ }^{\circ}{ }^{\circ}$

Double differential cross section

Inelastic scattering:

- Experiment resolves final energy of the neutron E.
- Scattering depends on energy
 transfer $\hbar \omega=E^{\prime}-E$.
- \Rightarrow Scattering cross section becomes ,double differential':

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=|b|^{2} N S(Q) \\
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \omega}=|b|^{2} N S(Q, \omega)
\end{gathered}
$$

- Structure Factor $S(Q) \Rightarrow$ Scattering Function $S(Q, \omega)$

Inelastic neutron scattering law recipe

... you gotta believe (or hear another one hour lecture)

1. Start with a static formula:

$$
S(\mathbf{Q})=\left\langle\sum_{j, k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}-\mathbf{r}_{j}\right)\right)\right\rangle
$$

2. Introduce time difference: intermediate scattering function $I(\mathbf{Q}, t)=\left\langle\sum_{j, k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(t)-\mathbf{r}_{j}(0)\right)\right)\right\rangle$
3. Take the Fourier transform from time to frequency:

$$
S(\mathbf{Q}, \omega)=\frac{1}{2 \pi N} \int_{-\infty}^{\infty} \mathrm{d} t \exp (-\mathrm{i} \omega t)\left\langle\sum_{j, k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(t)-\mathbf{r}_{j}(0)\right)\right)\right\rangle
$$

Coherent and incoherent scattering (neutrons)

$$
\begin{aligned}
& \sum_{j, k=1}^{N} b_{j}{ }^{*} b_{k} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(t)-\mathbf{r}_{j}(0)\right)\right)= \\
& =|\bar{b}|^{2} \sum_{j \neq k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(t)-\mathbf{r}_{j}(0)\right)\right)+\overline{|b|^{2}} \sum_{j=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{j}(t)-\mathbf{r}_{j}(0)\right)\right)= \\
& =|\bar{b}|^{2} \sum_{j, k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(t)-\mathbf{r}_{j}(0)\right)\right)+\left(|\bar{b}|^{2}-|\bar{b}|^{2}\right) \sum_{j=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{j}(t)-\mathbf{r}_{j}(0)\right)\right) \\
& S_{\mathrm{coh}}(\mathbf{Q}, \omega)
\end{aligned}
$$

Wrapping it all up: $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega \mathrm{d} \omega}=N \frac{k^{\prime}}{k}(\underbrace{|\bar{b}|^{2} S_{\mathrm{coh}}}_{\sigma_{\text {coh }} / 4 \pi}(\mathbf{Q}, \omega)+\underbrace{\left(\overline{\left.b\right|^{2}}-|\bar{b}|^{2}\right.}_{\sigma_{\text {inc }} / 4 \pi}) ~ S \underbrace{}_{\text {inc }}(\mathbf{Q}, \omega))$
with the scattering functions

$$
\begin{aligned}
& S_{\text {coh }}(\mathbf{Q}, \omega)=\frac{1}{2 \pi N} \int_{-\infty}^{\infty} \mathrm{d} t \exp (-\mathrm{i} \omega t)\left\langle\sum_{j, k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(t)-\mathbf{r}_{j}(0)\right)\right)\right\rangle \\
& S_{\text {inc }}(\mathbf{Q}, \omega)=\frac{1}{2 \pi N} \int_{-\infty}^{\infty} \mathrm{d} t \exp (-\mathrm{i} \omega t)\left\langle\sum_{j=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{j}(t)-\mathbf{r}_{j}(0)\right)\right)\right\rangle
\end{aligned}
$$

Intermediate scattering functions

$$
\begin{aligned}
& S_{\text {coh }}(\mathbf{Q}, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp (-\mathrm{i} \omega t) I_{\text {coh }}(\mathbf{Q}, t) \mathrm{d} t \text { with } I_{\text {coh }}(\mathbf{Q}, t)=\left\langle\frac{1}{N} \sum_{j, k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(t)-\mathbf{r}_{j}(0)\right)\right)\right\rangle \\
& S_{\mathrm{inc}}(\mathbf{Q}, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp (-\mathrm{i} \omega t) I_{\mathrm{inc}}(\mathbf{Q}, t) \mathrm{d} t \text { with } I_{\mathrm{inc}}(\mathbf{Q}, t)=\left\langle\frac{1}{N} \sum_{j=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{j}(t)-\mathbf{r}_{j}(0)\right)\right)\right\rangle
\end{aligned}
$$

Relation to diffraction:

$$
I_{\mathrm{coh}}(\mathbf{Q}, 0)=\left\langle\frac{1}{N} \sum_{j, k=1}^{N} \exp \left(\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{k}(0)-\mathbf{r}_{j}(0)\right)\right)\right\rangle=S(\mathbf{Q})
$$

Integral theorem of Fourier transform:

$$
I_{\mathrm{coh}}(\mathbf{Q}, 0)=\int_{-\infty}^{\infty} S_{\mathrm{coh}}(\mathbf{Q}, \omega) \mathrm{d} \omega
$$

This is mathematically what the diffraction experiment does: integration over all energy transfers.

Van-Hove correlation functions

One piece missing: Is there something like $g(r)$ for inelastic scattering?
Yes, similar to the static case one can define the van-Hove correlation functions

$$
\begin{aligned}
G(\mathbf{r}, t) & =\frac{1}{N}\left\langle\sum_{j, k=1}^{N} \delta\left(\mathbf{r}-\mathbf{r}_{k}(t)+\mathbf{r}_{j}(0)\right)\right\rangle \\
G_{\mathrm{s}}(\mathbf{r}, t) & =\frac{1}{N}\left\langle\sum_{j=1}^{N} \delta\left(\mathbf{r}-\mathbf{r}_{j}(t)+\mathbf{r}_{j}(0)\right)\right\rangle
\end{aligned}
$$

which have the intermediate scattering functions as Fourier transform:

$$
\begin{aligned}
& I_{\mathrm{coh}}(\mathbf{Q}, t)=\int_{V_{d}} G(\mathbf{r}, t) \exp (\mathrm{i} \mathbf{Q} \cdot \mathbf{r}) d^{3} r \\
& I_{\mathrm{inc}}(\mathbf{Q}, t)=\int_{V_{d}} G_{\mathrm{s}}(\mathbf{r}, t) \exp (\mathrm{i} \mathbf{Q} \cdot \mathbf{r}) d^{3} r
\end{aligned}
$$

Relation to static case ($t=0$ as before): $G(\mathbf{r}, 0)=\frac{\langle\rho(\mathbf{0}) \rho(\mathbf{r})\rangle}{\rho_{0}}=\delta(\mathbf{r})+\rho_{0} g(\mathbf{r})$

Fourier transform relations

Experiment level:

Scattering functions
$S_{\text {coh }}(\mathbf{Q}, \omega) \quad S_{\text {inc }}(\mathbf{Q}, \omega)$

Detailed balance factor

Asymmetry: $\quad S(\mathbf{Q}, \omega)$

Detailed balance condition:

$$
S(\mathbf{Q},-\omega)=\exp \left(\hbar \omega / k_{\mathrm{B}} T\right) S(\mathbf{Q}, \omega)
$$

Energy loss is more probable than energy gain.

$$
\text { Asymmetry of } \mathrm{S}(\mathrm{Q}, \omega) \Rightarrow I(Q, t) \text { and } G(r, t) \text { are complex! }
$$

Can be neglected for not too fast processes:

$$
t \gg \hbar / k_{\mathrm{B}} T \approx 0.03 \mathrm{ps} \text { at room temperature }
$$

Example: Diffusion

Example for Gaussian dynamics:
Diffusion, $\left\langle r^{2}\right\rangle=6 D t$

$$
G_{\mathrm{s}}(r, t)=\frac{1}{(4 \pi D t)^{3 / 2}} \exp \left(-\frac{r^{2}}{4 D t}\right)
$$

Fourier transform of a Gaussian is a Gaussian with reciprocal width.

$$
I_{\mathrm{inc}}(Q, t)=\exp \left(-D Q^{2} t\right)
$$

Diffusion 2

$$
I_{\mathrm{inc}}(Q, t)=\exp \left(-D Q^{2} t\right)
$$

Fourier transform of a
 an exponential decay is a Lorentzian.

$$
S_{\mathrm{inc}}(Q, \omega)=\frac{1}{\pi} \frac{D Q^{2}}{\omega^{2}+\left(D Q^{2}\right)^{2}}
$$

Summary inelastic scattering

- The scattering cross section depends on the scattering vector \mathbf{Q} and the energy transfer $\hbar \omega$.
- The scattering vector \mathbf{Q} is (as in elastic scattering) the vectorial difference of the incident and the scattered wave vector (scattering triangle), but depends now on ω too.
- Q roughly corresponds to a length $2 \pi / Q$.
- ω roughly corresponds to a time $2 \pi / \omega$.
- The exact relation between spatial correlation and scattering is a Fourier transform.
- The exact relation between temporal correlation and scattering is a Fourier transform.
- Inelastic scattering contains two components:
- coherent: from average scattering lengths, measures pair correlations
- incoherent: from variance of scattering length, measures self correlation

