Neutron Scattering Part 2: Techniques

Reiner Zorn

Jülich Centre for Neutron Science Forschungszentrum Jülich

- Short remarks on elastic scattering methods
- Triple axis spectrometer
- Time-of-flight spectrometer
- Backscattering spectrometer
- Neutron spin echo spectrometer

Elastic Neutron Scattering

a.k.a. Neutron Diffraction

Elastic scattering methods

Ultra-small angle scattering (uSANS) Small angle scattering (SANS) Powder, single crystal diffractometer

36"

6'

1°

10°

180°

3

Each spot contains a single wavelength λ_{hkl} under an angle $\theta_{hkl}/2$ corresponding to a lattice plane by

$$d_{hkl} = \frac{\lambda_{hkl}}{2\sin(\theta_{hkl}/2)}$$

- Advantage:
- high information content (2D)
- Disadvantage:
- single crystal necessary

in general not for polymers, except proteins (biopolymers)

- Advantage:
- macroscopically isotropic sample sufficient (necessary) powders, polycrystals, liquids amorphous polymers...
- Disadvantage:
- lower information content (1D)

SANS:

- Velocity selector:
 250 … 900 m/s ↔ 4.5 … 15 Å
- 20 m length, 2 cm diaphragms
 → min. 3 arc minutes
- Q = 10⁻³ ... 0.2 Å⁻¹
- I = 3 ... 600 nm

Ultra-small-angle scattering

Ultra-SANS:

- 11 m length, 2 mm apertures
 → min. 36 arc seconds
- Mirror optics enables to keep intensity (alternative: lenses)
- Q = 10⁻⁴ ... 2 · 10⁻³ Å⁻¹
- I = 0.3 ... 6 µm

Inelastic Neutron Scattering

a.k.a.

Neutron Scattering Spectroscopy, Dynamic Neutron Scattering, Quasielastic Neutron Scattering ...

Inelastic Scattering Methods

Triple-axis spectrometer

General construction scheme of neutron scattering spectrometers:

Primary spectrometer: selection of incident wavelength and direction

E and \mathbf{k}

Secondary spectrometer: detection of outgoing wavelength and direction

E' and \mathbf{k}'

 $\mathbf{Q} = \mathbf{k'} - \mathbf{k}$ $\hbar \mathbf{\omega} = E' - E$

Triple-axis spectrometer

3ax-principle requires motion of axis 3 in two dimensions: hovering airpads on ,Tanzboden' floor.

TASP, PSI, Villigen, Switzerland

Characteristics of triple-axis spectrometers

Flexibility:

- Full control of Q and ω within limits of wavelengths from source (using different monochromator crystals)
- Adjustable resolution (different collimators), tradeoff resolutionintensity possible

Disadvantage:

- Only one (\mathbf{Q}, ω) point is measured at a time.
- Long registration time for complete spectra (hours-days)
- Better suited if only peaks have to be found (phonons, magnons)

Time-of-Flight Spectrometer

Time-of-Flight Spectrometer

Grenoble, France

14

Specifications of TOF Instruments

Backscattering Spectrometer

Specifications of BS Instruments

The Resolution-Intensity Dilemma

Conventional inelastic experiment:

Energy difference selection:

Intensity $\propto \Delta \hbar \omega^2$!

... needs **identification** of neutrons!

Neutron Spin

Lecture 7: Larmor precession in constant field:

Is there any information the neutron carries with itself? — Yes:

Spin Direction

Neutron Spin

Lecture 7: Larmor precession in constant field:

Is there any information the neutron carries with itself? — Yes:

Spin Direction

$$\omega_{\rm L} = \frac{g_{\rm n} \mu_{\rm N}}{\hbar} B \iff 2900 \, \frac{\text{rot/s}}{\text{Gauss}}$$

... used as individual stop-watch

Spin development, elastic:

Neutron Spin Echo

24

Neutron Spin Echo

Neutron Spin Echo

Spin development, inelastic:

Neutron Spin Echo Theory Precession angle mismatch: $\Delta \phi = \left(\frac{2\pi |g_n| \mu_N m_n}{h^2}\right) Bl(\lambda_f - \lambda_i) \approx \frac{|g_n| \mu_N m_n \lambda^3 Bl}{t_{NSE}(B)}$

 \Rightarrow Loss of polarization:

$$P = \cos \Delta \phi$$

time parameter proportional to *B* and current

ω

... averaged over all scattered neutrons:

$$P(Q, t_{\text{NSE}}) = \frac{\int_{-\infty}^{\infty} S(Q, \omega) \cos(\omega t_{\text{NSE}}) d\omega}{\int_{-\infty}^{\infty} S(Q, \omega) d\omega} = \frac{I(Q, t_{\text{NSE}})}{I(Q, 0)}$$

Neutron Spin Echo measures directly the normalized intermediate scattering function!

NSE is not good for non-quasielastic scattering! Distribution of wavelengths $\rightarrow P = \left\langle I\left(Q, \left(\frac{\lambda}{\lambda_0}\right)^3 t\right) \right\rangle_{\lambda} / I(Q, 0)$

 $\Delta\lambda = 20\%$ means $\Delta t = 54\%$! For quasielastic scattering:

... but still the result looks ok! In addition 'compensation':

 $\left\langle I\left(\frac{\lambda_0}{\lambda}Q, \left(\frac{\lambda}{\lambda_0}\right)^3 t\right) \right\rangle_{\lambda}$ for diffusion $= \exp\left(-D\left(\frac{\lambda_0}{\lambda}Q\right)^2 \left(\frac{\lambda}{\lambda_0}\right)^3 t\right) = \exp\left(-\frac{\lambda}{\lambda_0}DQ^2t\right)$

But for non-quasielastic scattering: (even for $\Delta \lambda = 10\%$ only!)

 $S(Q,\omega)$

J-NSE in Munich

Neutron direction

Specifications of NSE Instruments

Special features:

- J-NSE: optimized correction coils
- IN15: focusing mirror
- SPAN: multidetector
- NSE@SNS:

pulsed beam at spallation source

INS: summary of methods

3AX	TOF	BS	NSE
ΔE > 100 μeV t < 20 ps	ΔE > 10 μeV t < 0.2 ns	ΔE > 1 μeV t < 2 ns	ΔE > 2 neV t < 1 μs
 flexibility of Q setting and resolution 	, ω + high efficiency ≈ 2h / Q-set of spectra	 simultaneously accessible Q range 	+ measures <i>I</i> (<i>Q</i> , <i>t</i>) directly
 low efficiency hours / single 	+ simultaneously -Q accessible Q	+ better than NSE for excitations	 a fow eniciency ≈ 6h / single-Q spectrum
 spectrum resolution often not sufficient 	range en – resolution often not sufficient	 low efficiency ≈ 12h / Q-set of spectra 	 (except few) only single Q vector
		 Doppler: short ħω range (±30 μeV) 	 less efficient for incoherent scattering